Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides

نویسندگان

  • Karen Lienkamp
  • Ahmad E. Madkour
  • Gregory N. Tew
چکیده

Polymer-based peptidomimetics, or proteinomimetics, are a relatively young and dynamic field of research. The ability to successfully mimic the biochemical activity of antimicrobial peptides (AMPs) has been demonstrated by several groups. This has been accomplished by careful tuning of the molecule’s hydrophobicity and charge density. At the same time, many important questions remain to be answered, including the role of backbone rigidity, details of membrane insertion, and the role of curvature in the self-assemblies between these novel peptidemimetics and phospholipids. As the biological properties of polymeric synthetic mimics of AMPs (SMAMPs) result from the interplay of many parameters, it is not yet possible to predict the exact properties of such molecules from their mere chemical structure. However, as demonstrated here, the effect of certain design features such as charge and hydrophobicity on the properties across a polymer series is understood. Compared to the mechanistic specifics that are known about the interactions of AMPs or small antibacterial molecules with membranes and cells, relatively little is known concerning the interaction of polymeric SMAMPs with membranes. Beyond SMAMPs, numerous opportunities exist and protein transduction domain mimics are an active area of research in the Tew laboratory. These two examples, one quite new and the other studied for almost a decade, demonstrate that it is possible to teach synthetic polymers to behave like peptides, despite their lack of sequence specificity and secondary structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptides and Peptidomimetics for Antimicrobial Drug Design

The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial p...

متن کامل

Evaluation of the Effect of Less Negatively Charged Amino Acid Substitution in Synthetic Tetramer Peptide S3 Derived from Horseshoe Crab Ambocyte on its Antibacterial Properties

Introduction: The study of the effects of synthetic peptides with antibacterial properties can provide more effective antibiotics. This study designed, expressed, and investigated the Sushi 3 tetramer peptide. Subsequently, it was compared in terms of changing antibacterial properties with another Sushi3 tetramer peptide the aspartic acid and proline amino acids of which were replaced with glyc...

متن کامل

Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

Polyguanidinium oxanorbornene ( PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previousl...

متن کامل

Jointly Handling Potency and Toxicity of Antimicrobial Peptidomimetics by Simple Rules from Desirability Theory and Chemoinformatics

Today, emerging and increasing resistance to antibiotics has become a threat to public health worldwide. Antimicrobial peptides have unique action mechanisms making them an attractive therapeutic prospect to be applied against resistant bacteria. However, the major drawback is related with their high hemolytic activity which cancels out the safety requirements for a human antibiotic. Therefore,...

متن کامل

A strategy for enhanced antibacterial activity against Staphylococcus aureus by the assembly of alamethicin with a thermo-sensitive polymeric carrier.

We demonstrate here a strategy for enhanced antibacterial activity against microbial strains by the assembly of antimicrobial peptides with a temperature-responsive polymeric carrier. The assembly complex was less toxic to human cells and more stable to enzymatic cleavage. This work may provide a promising drug delivery system for antimicrobial peptides.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010